Lecture Outline (Minor reasonable changes may apply without prior notice.)

Flexible Electronics and Systems Cheng-Yao Lo

<u>Schedule</u> W2W3W4

Place TBD

Description

Flexible electronics device and system made by printing technologies gained various attentions from the professional fields of physics, chemistry, material, and electrical engineering, which generated a novel research field of flexible printronics.

This lecture will start from the conventional solid-state electronics, which covers the physics, process, function, and reliability for the first half; then enter the flexible printing technologies from materials to system designs with selected topics on optical, sensing, storage, transportation, and medical applications.

Students will gain combinational knowledge of solid-state and polymer electronics device and system as well as their respective processes. Practical simulations will be conducted to let students obtain real feelings of the system designs.

Prerequisite

Students are expected to have a bachelor's degree in physics-, chemistry-, mechanics- or electrical-related engineering fields. Professional background of solid-state physics or industrial experience is a plus.

Evaluation Attendance: 10% Homework/Exam: 60% Presentation and report: 30%

Reference

- 1. Flexible Electronics, ISBN: 978-0387743622
- 2. Polymer Electronics, ISBN: 978-1847354228
- 3. Printed Organic and Molecular Electronics, ISBN: 978-1402077074

Lecture Outline (Minor reasonable changes may apply without prior notice.)

Outline (change without prior notice may apply) Week 1~3: Introduction and market Week 4~5: Flexible glass Week 6~8: Engineered films

Week 9: Mid-term examination

Week10~11: Barrier and transparent conducting oxide Week 12~14: Mechanics and stability Week 15~16: TFT on polymer Week 17: Case study

Week 18: Final examination