Biomechanics

Instructor:	Chao-Min Cheng
Office:	台達館 309
Telephone:	ext. 62402
E-mail:	chaomin@mx.nthu.edu.tw
Office Hours:	By appointment
Lecture:	W5W6W7

Prerequisites

None, unless your background is not in engineering. If this is the case, then please come talk to me first for "Instructor Permission". In addition, a background in cell and molecular biology as well as mechanics will be helpful in this class (although not required).

Course Objectives

This course discusses how mechanical quantities and processes such as force, motion, and deformation influence body (and cell) behavior and function, with a focus on the connection between mechanics and biochemistry, in advance. Specific topics include: (1) large-scale biomechanics; (2) tissue-level biomechanics; (3) the role of stresses in the cytoskeleton dynamics as related to cell growth, spreading, motility, and adhesion; (4) the generation of force and motion by moot molecules; (5) protein and DNA deformation.

During this course we will introduce you to these subjects, train you to use them in real world applications, allow you to address a specific project, ask you to present and write about the project, and give you experience working as a team. This course will be a learning experience for you. We will have fun, but I demand a high level of application from my students in order to get the most out of it for everyone.

Textbook N/A; class notes/journal papers/magazine articles

Grades

Report (assignment) (3) 30%; 200 words (in English) Cell Culture and Immunostaining Report 30% Final Report & Presentation 40%; 1000 words (in English)

Tentative Schedule

Week 1-2 (2/20, 2/27): Introduction to biomechanics
Week 3-4 (3/6, 3/13): Large-scale biomechanics (cardiovascular system) Report #1
Week 5-7 (3/20, 3/27, 4/10): Large-scale biomechanics (skeletal system); Dr. Po-Liang Lai at Chang Gung Memorial Hospital Report #2
Week 8-9 (4/17, 4/24): Why mechanics matters to biology and medicine?
Week 10 (5/1): Mechanics versus biochemistry
Week 11 (5/8): Cell movement and deformation
Week 12 (5/15): Cytoskeleton dynamics (may include protein and DNA deformation) Report #3
Week 13-14 (5/22, 5/29): Cell culture and immunostaining (with T.A.)
Week 15 (6/5): Final Presentation