一、課程說明(Course Description)
本課程著重於常微分方程之定性理論,預備知識需高等微積分及線性代數.
本課程提供三學分的常微分方程基本理論,為研究生之標準課程。

二、指定用書(Text Books)

Sze-Bi Hsu, Ordinary Differential Equations with Applications, World Scientific, second edition, 2013

三、參考書籍(References)

1. Jack Hale: Ordinary differential Equations, 2nd edition, 1980.
2. J.Hale and H. Kocak: Dynamics and bifurcations
3. Robinson: Dynamical Systems
4. Richard K. Miller and Anthony N. Michel, Ordinary Differential Equations.
5. Morris W. Hirsch, Stephen Smale, Robert L. Devaney, Differential Equations,
Dynamical Systems, and an Introduction to Chaos, Acdaemic Press, 2004.

四、教學方式(Teaching Method)

演講及計算.
課堂上課. 時間: W3,4, Thu 1,2
地點: 綜三館 R723


五、教學進度(Syllabus)

1. Orbital stability , application of stable and unstable manifolds: travelling wave solution
2. Method of Lyapunov Functions
3. Two-Dimensional Systems, Poincare Bendixson Theorem, Hopf Bifurcations
4. Second order linear equations , Sturm-Liouville eigenvalue Theorem, Green's functions

六、成績考核(Evaluation)

Assignments (30%)
Midterm (35%)
Final (35%)

七、可連結之網頁位址 無