1. 開課緣由 (Purpose):

鑒於國內材料、生物科學、化學、物理、綠色能源(太陽能電池、燃料電池、鋰電池)、環境科學、奈米科學等材料相關領域對X光吸收光譜技術的殷切需求,在研究上不論是數據分析以及基本原理與對應的應用領域以及具備此分析方法的人才仍有極大不足,因此規畫開設此課程。本課程與 “同步加速器在材料科學應用” 的內容有顯著差異,該課程內容偏重同步輻射各種技術概論,課程由同步輻射中心各光束線發言人或科學家講授。而本課程則著重X光吸收光譜原理與實務的技術分析能力的養成,本課程將以同步輻射光譜原理出發,並講授在材料、能源科學以及環境科學各領域的相關應用與方法,其中亦將邀請國內光譜模擬分析的專家給予建議與授課,相信不論對本系或是本校在材料分析方法與元素光譜分析相關研究的學員將有實質的助益。

2. 先修課目 (Pre-credict): 無

3. 教科書目 (Textbook): 無

3. 參考書目 (Reference):

1. D.C. Koningsberger and R. Prins, Editors; Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications), 1998, John Wiley & Sons: New York.
2. 同步辐射科学基础 (佐藤繁; 上海交大; 2010-4)


4. 教學目的與課程說明 (Objective and course description)
This lecture aims at establishing the student's analytic and practical experiment capabilities for materials science, physical chemistry, environment science, and surface science via the X-ray absorption spectroscopy techniques in advanced level. By learning this lecture, the students are expected to be able to conduct independent research in all kinds of materials sciences especially the structure analysis of nanoscaled energy materials and surface molecular sorption behaviors in ambient environments.
建立學生以X光吸收光譜分析技術對材料科學、物理化學、表面科學等各方面科學領域中的結構分析理論、分析能力與實務操作。並以此基礎發展其在奈米科學與材料科學領域之獨立研究能力。

5. 上課方式 (Teaching Methods): Three hours lecture per week, power point slides, tutorials, group discussions, and invited speeches

6. 成績考核 (Evaluation):
1. assignments: 15%;
2. midterm exam: 25%;
3. group discussions: 30%;
4. tutorials, experiment design, and presentations 30%

7. 課程綱要 (Syllabus):

1. Chapter 1 - Introduction to X-ray absorption spectroscopy (XAS): history and applications

2. Chapter 2 - Principles of XAS theory

3. Chapter 3 - X-ray absorption near edge spectroscopy (XANES) and Extended X-ray absorption fine structure (EXAFS)

4. Chapter 4 - Experiment techniques and limitations of XAS: Optics, sample environments, and data acquisition systems for XAS

5. Chapter 5 - XAS practical: structure characterizations from bulk to molecules (crystal defects (thin films) → atomic structure arrangements (heterogeneous catalyst) → surface adsorption (soil science) → metallic protein complexes (biomedicine and soft matters physics) → metallic polymer conjugates → atomic thermal vibration)

6. Chapter 6 - XAS practical: geometric consideration on the XSA data interpretations (case study by Pt/AC), case study on the bimetallic nanoparticles

7. Midterm exam

8. Chapter 7 - XAS data interpretation and analysis (ifeffit program: Athena package for data normalization, calibration, chemical composition analysis, preliminary analysis)

9. XAS practical topics: environment science

10. XAS practical topics: heterogeneous catalysts

11. Chapter 7 - XAS on chemical composition analysis, coordination environment

12. XAS practical topics: biomedical

13. Group presentations (literature reviews and experiment designs)