Class Schedule of "Introduction to Metamaterials and Plasmonics" (Fall, 2013)

Faster, Smaller, Stronger!! Welcome to 10210MS 536300 to learn what the revolutionary Metamaterials and Plasmonics have achieved in the past and promise in the near future. Recently, Metamaterials and Plasmonics have been attracting increasingly attention because they enable rare and even unprecedented properties stemming from strong light-matter interaction. In this class we will introduce the basic concepts about Metamaterials and Plasmonics within five parts: 1. Light-matter interaction, 2. Metamaterials, 3. Plasmonics, 4. Numerical tools, and 5. Term projects. As for the detail content and the class schedule, please refer to the following table.

Location: B1-02, Bldg., Delta

Date: M6M7M8

Week	Date	Content (English-based)	
1	9/16	I. Light-matter interaction	syllabus
2	9/23		Maxwell equations (from intergral form to differential form), wave equation
3	9/30		bondary conditions, dispersion in metals (Drude and Lorentz models)
4	10/7		response in dielectrics (microscopic & macroscopic properties), light-matter interaction (scattering)
5	10/14	·II. Metamaterials	split-ring resonantors, plasmonic wires, NRIM,
6	10/21		fishnet strucutres, two-handed MMs, hypermedia
7	10/28		dielectric metmaterials, slow light, transformation optics
8	11/4		perfect absorber, other kinds of MMs (accoustic MMs, transmission lines)
9	11/11	Midterm	midterm
10	11/18	III. Plasmonics	surface plasmon polariton, magnetic surface polariton
11	11/25		localized surface plasmonic resonances, 4 interrogations & applications
12	12/2		SPASER, plasmonic circuits
13	12/9	IV. Numerical tools	FDTD, FEM
14	12/16		genetic algorithm
15	12/23	V. Final (term projects)	techinical communication
16	12/30		term projects
17	1/6		term projects
18	1/13		my feedback

This schedule is subject to being adjusted upon actual intruction progess and students' feedback.

Grading policy: midterm (40%), final (60%, including both oral & report)

TA: 黄宗鈺 (Kyle): d9731569@oz.nthu.edu.tw