Engineering Mathematics II (10020MS 201200) Spring, 2012

Class Time: T3T4 R3R4

Class Room: 台達 B103

- Instructor: Ta-Jen Yen (嚴大任) Office: R429, Building Delta Tel: (03) 574-2171 E-mail: tjyen@mx.nthu.edu.tw
- Textbooks: Advanced Engineering Mathematics (2nd edition), *Michael D. Greenberg*, 滄海書局
- Grading: Quizzes (x3, 25%) Midterms (x2, 50%) Final (25%)
- TAs: Jerry (郭育銘): jerry.mse100@gmail.com Olivia (江叡涵): <u>olivia30127@hotmail.com</u> Victor (李璧伸): <u>user78814@yahoo.com.tw</u> Jeffrey (黃琮融): <u>richard19520@yahoo.com.tw</u> Winson (張明軒): just-winson@hotmail.com
- **TA Hours** 7-9 pm, Wednesday (R107, MSL Building)

Content:

The subject of *Engineering Mathematics* is comprised of five parts within two semesters:

- 1. Ordinary Differential Equations
- 2. Linear Algebra
- 3. Multivariable Calculus and Field Theory
- 4. Fourier Methods and Partial Differential Equations
- 5. Complex Variable Theory

In the second semester, we focus on "*Multivariable Calculus and Field Theory*", "*Fourier Methods and Partial Differential Equations*", and "*Complex Variable Theory*" to cover the rationale and of particular the engineering applications. The detailed schedule of this semester is listed below:

Class	Schedule	of Engin	eering N	Aathemetics	(2012S)
-------	----------	----------	----------	--------------------	---------

Week	Date	Chapters	Content	
		SYLLABUS	syllabus, partial dervatives, composite fxn. & chain differentiation	
1	2/21 - 2/23	Ch. 13. DIFFERENTIAL CLACULUS OF	Taylor series, implicit fxns and Jacobians	
		FUNCTIONS OF SEVERAL VARIALBES	maxima and minima, Leibniz rule	
2	2/27 - 3/1		dot and cross product, multiple products	
3 3		Ch. 14. VECTORS in 3-SPACE	differentiation of a vector fxn of a single vairable	
	3/6 - 3/8	Ch 15 CURVES SURFACES AND	curve and line integrals, double and triple integrals	
4	3/13 - 3/15	VOLUMES	Quiz (1/3): ch. 13 - 14	
			surfaces & volumes, surface and volume integrals	
		Cb. 16. SCALAR AND VECTORS FIELD	divergence, gradient, curl	
5	3/20 - 3/22	THEORY	Laplacian, non-Cartesian systems, divergence theorem	
			(Green's identity), Stokes's theorem, irrotational fields	
6	3/27 - 3/29	MIDTERM (1/2)	Multivariable Calculus and Field Theory: Ch. 13 - 16	
7	4/3 - 4/5		4/3 : holidays	
		Ch. 17. FOURIER SERIES, FOURIER	odd, even & periodic fxn., FS of a periodic fxn, HRE/QRE	
8	4/10 - 4/12	INTEGRAL, FOURIER TRANSFORM	vector space approach, SL theory, periodic & singular SL problems	
	H/10 - H/12		Fourier integral, Fourier transform	
9) 4/17 - 4/19		Quiz (2/3): ch. 17	
	4/24 - 4/26		definition about PDE, seperation of variables	
		Ch. 18. DIFFUSION EQUATION	FT and LT, (the method of images)	
10			numerical solution	
		Ch. 19. WAVE EQUATION	seperation of variables: vibration string and membrane	
11	5/1 - 5/3		d'Alembert's solution, integral transfrom for PDE's	
		Ch. 20. LAPLACE EQUATION	seperation of variables: Cartesian coordinates	
12	5/8 - 5/10	MIDIERM (2/2)	Pourier Methods and PDE: Ch. 17 - 19	
12	5/15 - 5/17	Ch 21 EUNCTIONS OF A COMPLEX	complex numbers and plane, elementary fxns, polar form	
15		VARIABLE	additional elementary fxns, Multi-valuedness, differential calculus and analyticity	
			Quiz (3/3): ch. 20 - 21	
14	5/22 - 5/24	Ch. 22. COMFORMAL MAPPING	conformal mapping	
			bilinear transformation, applications	
15	5/29 - 5/31	Ch. 23. THE COMPLEX INTEGRAL	complex integral, Cauchy's theorem	
			fundamental theorem, Cauchy integral formula	
16	6/5 - 6/7		complex series and TS, Laurent series	
-	6/12 - 6/14	Ch. 24. TAYLOR SERIES, LAURENT	classification of singularities, residue theorem	
17		SERIES, AND THE RESIDUE THEOREM	applications	
18	6/19 - 6/21	FINAL EXAM	Complex Variable Theory: Ch. 20 - 24	

This schedule is subject to being adjusted upon actual intruction progess and students' feedback.