

National Tsing Hua University

PME 434200 Mechanical Vibrations 振動學

Spring 2018

Instructor: Prof. Jen-Yuan (James) Chang 張禎元 教授 Credits: 3 credits.

Language: This course will be **offered in English**

Class meetings: T1T2R2 Engineering Building I – R101 Office hours: Tuesdays 17:30-18:30

Goal: To gain a physical and mathematical understanding of how systems vibrate. First, we will gain a

better understanding of how simple systems vibrate. We will then develop an understanding of the fact that complicated systems have "modes" of vibration that behave in a very similar way to simple systems. An additional goal will be to develop an understanding of some modern analytical and

experimental techniques with a team work design project for vibration reduction/isolation.

Textbook: Singiresu S. Rao "Mechanical Vibrations," 5th SI Edition, Prentice Hall, Singapore, 2011.

Daniel J. Inman, "Engineering Vibration," 4th Edition, International Edition, Pearson Education

Limited, England, 2014.

Teaching Method: Classroom lectures will be offered in both Chinese and English with teaching materials posted in

Moodle.

Assessments: Quizzes 25% Approximately 45 minutes/quiz, 4 quizzes total. Closed book and notes.

Missed quizzes: Notify Prof. Chang in advance to make up the quiz.

Lab assignment 10% Two laboratory assignments, 4 students per group.

Lab1: Estimating natural frequency and damping ratio

Lab2: Forced vibration experiment

Term project 15% Group project, 4 students per group.

Midterm Exams 20% In-class individual efforts, closed book and notes Final Exam 30% In-class individual effort, closed book and notes.

Schedule:

Lecture	Topic	Book Chapters	
		D. J. Inman	S.S. Rao
1	Introduction to Vibration & Fundamentals of Mechanical	Chapter 1	Chapter 1
	Vibration Phenomena		
2	Newtonian Dynamics	Chapter 1	Chapter 2
	Linear Mechanical System		
3	Newtonian Dynamics	Chapter 1	Chapter 2
	Rotational Mechanical System		
4	Analytical Dynamics	Chapter 1.7, Chapter 4.7	Chapter 6
5	Free & Forced Vibrations of	Chapter 2, Chapter 3	Chapter 2, 3, 4
	Single Degree of Freedom Systems		
6	Solving Dynamics and Vibrations with Laplace Transform	Chapter 3.4	Chapter 4, 5
7	Fourier Transform in Vibrations	Chapter 3.5	Chapter 1
8	Vibrations of Multi-DOF Systems	Chapter 4	Chapter 5, 6, 7
9	Forced Vibrations of Multi-DOF Systems	Chapter 4	Chapter 5, 6
10	Vibration Isolation and Absorption	Chapter 5	Chapter 9
11	Vibrations of Distributed-Parameter Systems	Chapter 6	Chapter 8
12	Practical Vibration Systems	Chapter 7	Chapter 10
13	Vibration Measurements & Experimental Modal Analysis	Chapter 7	Chapter 10
14	Introduction of Finite Element Method in Vibration Analysis	Chapter 8	Chapter 12