國立清華大學_107_學年第_2_學期課程課程大綱

科號	LSMC5153	組別	00	學分	2	人數限制	0
修課年級	★學部 二 年級以上碩士班一年級以上(含博士班)碩士班二年級以上(含博士班)						
上課時間	RbRc			教室	生二213		
科目中文名稱	演化生物學特論						
科目英文名稱	Special Topics on Evolutionary Biology						
任課教師	黄貞祥						
擋修科目	無			當修分	數	#	

※下列各欄由任課教師提供※

一、課程說明	This course is designed for graduate and high level undergraduate students to discuss important and interesting papers in fields of evolutionary genetics, evolutionary genomics, evolutionary developmental biology, and evolutionary ornithology.		
二、指定用書	Journal papers (Nature, Science, PNAS, Cell, Nature Communication, Current Biology, eLife, PLOS Biology, PLOS Genetics, MBE, GBE, etc.)		
三、參考書籍	Selected papers from high profile journals such as <i>Cell, Science, Nature, Nature Genetics, PNAS, PLOS Biology, PLOS Genetics, MBE, GBE</i> , etc.		
四、教學方式	All students are required to read all assigned chapters and papers and then participate in classroom discussion.		
五、教學進度	 Topics GENOME EVOLUTION □ Origins of New Genes and Pseudogenes PHYLOGENY □ Reading a Phylogenetic Tree: The Meaning of Monophyletic Groups □ Trait Evolution on a Phylogenetic Tree: Relatedness, Similarity, and the Myth of Evolutionary Advancement • MACROEVOLUTION □ The Molecular Clock and Estimating Species Divergence • SPECIATION ■ Haldane's Rule: the Heterogametic Sex 		

■ Hybrid Incompatibility and Speciation								
 Hybridization and Gene Flow Why Should We Care about Species? MICROEVOLUTION 								
					Evolutionary Adaptation in the Human LineageGenetic Mutation			
Evolutionary Adaptation to Infectious Disease								
Negative Selection								
Neutral Theory: The Null Hypothesis of Molecular								
Evolution								
Sexual Reproduction and the Evolution of Sex								
Schedule:								
Week 1~4: Genome Evolution								
Week 5~6: Phylogeny								
Week 7~10: Macroevolution								
Week 11~13: Speciation								
Week 14~18: Microevolution								
Class performance: 35%. Assigned presentation: 45%.								
Attendance: 20%.								
iLMS								
ILIVIS								