國立清華大學_107_學年第_2_學期課程課程大綱 | 科號 | LSMC5153 | 組別 | 00 | 學分 | 2 | 人數限制 | 0 | |--------|--|----|----|-----|-------|----------|---| | 修課年級 | ★學部 二 年級以上碩士班一年級以上(含博士班)碩士班二年級以上(含博士班) | | | | | | | | 上課時間 | RbRc | | | 教室 | 生二213 | | | | 科目中文名稱 | 演化生物學特論 | | | | | | | | 科目英文名稱 | Special Topics on Evolutionary Biology | | | | | | | | 任課教師 | 黄貞祥 | | | | | | | | 擋修科目 | 無 | | | 當修分 | 數 | # | | ## ※下列各欄由任課教師提供※ | 一、課程說明 | This course is designed for graduate and high level undergraduate students to discuss important and interesting papers in fields of evolutionary genetics, evolutionary genomics, evolutionary developmental biology, and evolutionary ornithology. | | | |--------|---|--|--| | 二、指定用書 | Journal papers (Nature, Science, PNAS, Cell, Nature Communication, Current Biology, eLife, PLOS Biology, PLOS Genetics, MBE, GBE, etc.) | | | | 三、參考書籍 | Selected papers from high profile journals such as <i>Cell, Science, Nature, Nature Genetics, PNAS, PLOS Biology, PLOS Genetics, MBE, GBE</i> , etc. | | | | 四、教學方式 | All students are required to read all assigned chapters and papers and then participate in classroom discussion. | | | | 五、教學進度 | Topics GENOME EVOLUTION □ Origins of New Genes and Pseudogenes PHYLOGENY □ Reading a Phylogenetic Tree: The Meaning of Monophyletic Groups □ Trait Evolution on a Phylogenetic Tree: Relatedness, Similarity, and the Myth of Evolutionary Advancement • MACROEVOLUTION □ The Molecular Clock and Estimating Species Divergence • SPECIATION ■ Haldane's Rule: the Heterogametic Sex | | | | ■ Hybrid Incompatibility and Speciation | | | | | | | | | |--|--|--|--|--|---|--|--|--| | Hybridization and Gene Flow Why Should We Care about Species? MICROEVOLUTION | | | | | | | | | | | | | | | Evolutionary Adaptation in the Human LineageGenetic Mutation | | | | | | | | | | | | | | | Evolutionary Adaptation to Infectious Disease | | | | | | | | | | Negative Selection | | | | | | | | | | Neutral Theory: The Null Hypothesis of Molecular | | | | | | | | | | Evolution | | | | | | | | | | Sexual Reproduction and the Evolution of Sex | Schedule: | | | | | | | | | | Week 1~4: Genome Evolution | | | | | | | | | | Week 5~6: Phylogeny | | | | | | | | | | Week 7~10: Macroevolution | | | | | | | | | | Week 11~13: Speciation | | | | | | | | | | Week 14~18: Microevolution | Class performance: 35%. Assigned presentation: 45%. | | | | | | | | | | Attendance: 20%. | | | | | | | | | | iLMS | | | | | | | | | | ILIVIS | | | | | | | | | | | | | | | | | | |