STAT5330: 統計計算 (Statistical Computing)

Lecture:	Tuesday 13:20-16:20pm 综合三館 837
Instructor:	徐南蓉 <u>njhsu@stat.nthu.edu.tw</u> 陳素雲 <u>syhuang@stat.sinica.edu.tw</u>
Website:	NTHU iLMS 數位學習平台 https://lms.nthu.edu.tw/

Books:

- The Elements of Statistical Learning (2009), Hastie, Tibshirani and Friedman, Springer.
- Bayesian Data Analysis (2004), Gelman, Carlin, Stern and Rubin, Chapman & Hall.
- Convex Optimization (2004), S. Boyd and L. Vandenberghe, Cambridge University Press.
- Deep Learning with Python (2018). F. Chollet. Manning Publications.

Course Topics:

This course covers modern computationally methods and practice for statistical analysis. The course consists of two parts taught by 2 instructors (徐南蓉: week 1 and week 3-10; 陳素雲: week 2 and week 11-16). Here is the topics and tentative schedule.

week	Date	Торіс	Lab			
Part I						
1	2/19	Introduction I	R introduction			
2	2/26	Introduction II (overview for 2 nd	Matlab and Python			
		part of this course)	introduction			
3	3/5	Random number generation				
4	3/12	MCMC methods: Gibb sampling and	R: data manipulation			
		Metropolis algorithm	R markdown			
5	3/19	Monte Carlo methods:	R ggplot			
		evaluating expectations and				
		statistical inference				
6	3/26	Optimization methods				
7	4/2	EM algorithm and generalizations				
8	4/9	Dimensional reduction	R shiny			
9	4/16	Dimensional reduction				
10	4/23	Student presentation				

Part II					
11	4/30	Kernel machines (kernel PCA)	Matlab		
12	5/7	Kernel machines (start with a	Matlab		
		quick review of LDA and logistic			
		regression, then introduce kernel			
		LDA, kernel logistic, and SVM)			
13	5/14	Kernel machines (more on SVM,	Matlab		
		primal and dual optimization, a			
		little bit of RKHS)			
14	5/21	Neural networks (mathematical	Python		
		building blocks of NN, chaining			
		derivatives, back-propagation)			
15	5/28	Neural networks (connection with	Python		
		and comparison to LDA, logistic			
		regression, SVM)			
16	6/4	Neural networks (a light touch of	Python		
		deep learning)			
17	6/11	Final week			

Grading: Part I: 50% (4 homework; each takes 1/4 scores) Part II: 50% (4 homework; each takes 1/4 scores)