

^{10820ASTR660000} Computational Astrophysics 計算天文物理

Instructor

Assis. Prof. Kuo-Chuan Pan (潘國全) Office: General building II, R506 Email: <u>kuochuan.pan@gapp.nthu.edu.tw</u> Phone: 03-5742563 Office hours: TBD or by appointment Class web page: <u>https://kuochuanpan.github.io/courses/108ASTR660_CA</u>

Class Schedule

Lectures on Thursday from 14:20 - 17:20 General building II, R521

SYLLABUS

Preface:

This course does not require previous programming experience but with little knowledge on compiled languages and/or python is recommended. We will use mainly Fortran (or C/C++) with some python in the course. A Unix-like system (e.g. Linux, Mac OS X, or Windows 10 subsystem for Linux) is required. Students are required to bring a laptop to class.

Course description:

Lecture schedule

Week	Date	Topics
1	3/5	Course overview / Shell language / Version control
2	3/12	Basic Fortran Programming
3	3/19	Basic Python Programming
4	3/26	Linear Systems
5	4/2	(holiday) no lecture
6	4/9	Non-linear equations
7	4/16	(professor away) no lecture
8	4/23	Initial Value Problems (Celestial movement)

9	4/30	Boundary Value Problems (Stellar structure)
10	5/7	Project Proposal Presentation
11	5/14	PDE: Hyperbolic systems (Hydrodynamics I)
12	5/21	PDE: Elliptical systems (Gravity)
13	5/28	Parallel Programming with MPI / OpenMP
14	6/4	Parallel Programming with GPUs (Prof. Hsi-Yu Schive)
15	6/11	Final project presentation
16	6/18	(final exam week) no lecture

Teaching method:

Weekly lectures with several homework assignments and a final project (including a written report and a classroom presentation).

Evaluation:

Grades will be determined by homework assignments (70%), and the final project (30%).

Text books:

None

References:

- 1. "Numerical Recipe", by Press, W.H. (http://www.nr.com)
- 2. "Numerical Methods in Astrophysics", by Bodenheimer, P. et al.
- "Scientific Computing: An introductory survey", by Michael Heath
 "Introduction to Computational Astrophysical Hydrodynamics", by Zingale, M. (<u>https://</u> github.com/python-hydro/hydro_examples) 5. "The C Programming Language", by Kernigan, B.W.
- 6. "Finite Volume Methods for Hyperbolic Problems", by Leveque, R. J.
- 7. "Parallel Programming with MPI", by Pacheco P.