一、課程說明:
本課程介紹深度學習之基本網路架構設計,原理,網路訓練及實際應用範例。本課程將要求修課同學
以電腦程式作業及修課專題的方式實作深度學習演算法,以深入了解深度學習理論及演算法特性。
二、指定用書(Text Books)
Charu C. Aggarwal, Neural Networks & Learning, Springer, 2018, ISBN 978-3-319-
94462-3
三、參考書籍(References)
Ian Goodfellow, Yashua Bengio, and Aaron Courville, Deep Learning, MIT Press,
2016
四、教學方式(Teaching Method)
以投影片教學為主,另外會有computer assignments及projects以輔助教學
五、教學進度(Syllabus):
1. Introduction to machine learning
2. Introduction to Neural Networks
3. Machine Learning with Shallow Neural Networks
4. Training Deep Neural Networks
5. Teaching Deep Learners to Generalize
6. Radial Basis Function Networks
7. Recurrent Neural Networks
8. Convolutional Neural Networks
9. Deep Reinforcement Learning
10. Generative Adversarial Networks
11. Transformers
六、成績考核(Evaluation)
Homework 35%
Course Projects 35%
Midterm & Final Exams: 30%
七、可連結之網頁位址
http://lms.nthu.edu.tw/