一、課程說明:
本課程介紹機器學習之基本數學理論基礎及其在不同領域(如樣型識別、信號處理及資料分析及統
計)之實際應用。本課程將要求修課同學以電腦程式作業及修課專題的方式實作機器學習演算法,
以深入了解機器學習理論及演算法特性。
二、指定用書(Text Books)
Christopher M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006, ISBN: 0387310738
三、教學方式(Teaching Method)
以投影片教學為主,另外會有computer assignments及projects以輔助教學
四、教學進度(Syllabus):
1. Introduction to machine learning
2. Probability distributions
3. Linear regression models
4. Linear classification models
5. Neural networks
6. Kernel methods
7. Graphical models
9. Mixture models and EM
10. Ensemble Learning
五、成績考核(Evaluation)
1. Homework (60%)
Written exercises (selected problems) (30%)
Computer assignments (30%)
2. Course project for 2~3-person team (40%)
以上課綱參考2022 spring 林嘉文老師開設的655000機器學習課程