一、課程說明(Course Description)
Basically we shall cover the following topics.
(1)Cauchy-Riemann equation,Cauchy theorem for holomorphic functions,
(2)Cauchy integral formula,
(3)Maximum modulus principle,
(4)Laurent series,meromorphic functions,
(5)Calculus of residues,
(6)Harmonic functions of two real variables,
(7)Conformal mappings, Riemann mapping theorem,
(8)Linear fractional transformation.
二、指定用書(Text Books)
程守慶:數學:我思故我在,華藝學術出版部,新北市,台灣,2022
三、參考書籍(References)
1. L. V. Ahlfors: Complex Analysis, .
2. E. M. Stein and R. Shakarchi: Complex Analysis, Princeton University Press.
3. R. E. Greene and S. G. Krantz: Function theory of one complex variable,
John Wiley & Sons, INC.
4. W. Rudin: Real and Complex Analysis, McGraw-Hill Book Company.
5. R. P. Boas: Invitation to complex Analysis, McGraw-Hill, International
Editions, 1992
四、教學方式(Teaching Method)
Lecture and assignments.
五、教學進度(Syllabus)
六、成績考核(Evaluation)
It will be announced in the first class.
七、可連結之網頁位址