Magnetic Resonance Imaging Principles and Applications 核磁共振影像原理及應用

Instructor: 彭旭霞 (Peng, Hsu-Hsia)

Office: BMES R415

TEL: +886-3-5715131 ext. 80189 E-Mail: hhpeng@mx.nthu.edu.tw Lecture Time: Thursday 09:00~12:00

Classroom: BMES R501

Office Hour: Tuesday 10:00~12:00 (appointment via E-mail)

Course No.: 11210BMES546700

1. Prerequisites

General physics

2. Text books/Optional References

(1) Lecture slides: eeclass

(2) Robert W. Brown, Yu-Chung N. Cheng, Michael, R. Thompson, Ramesh, Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd edition, 2014, Wiley Blackwell.

3. Course Description

This course introduces the fundamental concepts and applications of magnetic resonance imaging. The concepts include spin behavior, NMR signals, hardware, pulse sequence and k space. The technical applications regarding fast scan, parallel imaging, artifacts will be covered in this course. We will also introduce some of clinical applications, e.g. fMRI, angiography, diffusion, and perfusion.

4. Course Objectives

- (1) Develop basic concepts and important applications of MRI
- (2) Develop problem-solving and critical thinking skills
- (3) Learn to integrate and apply various concepts to a single problem

5. Topic

- (1) NMR signal
- (2) Spatial encoding
- (3) Hardware
- (4) Image quality and contrast
- (5) MRI pulse sequence and k-space
- (6) Fast scan
- (7) Parallel imaging
- (8) MRI artifacts
- (9) fMRI
- (10) MR angiography
- (11) Phase contrast MRI
- (12) Diffusion imaging
- (13) Perfusion imaging

6. Evaluation

(1) **Ouiz: 70%**

- Quiz1: 35%, Quiz2: 35%

- You can bring a handwriting A4-size note (double-side)

(2) **Final report: 25%**

- 1 persons/group
- Journal paper (1 major paper + 2 references)
 - targeting journal: Nature, Science, or their series (published year: after 2020)
 - topic : new knowledge related to MRI
- Abstract (4%): Two-page A4
 - (1) Title, authorship, journal, volume, page, year
 - (2) Chinese/English, 12-size, single space
 - (3) Organized descriptions of the major paper
 - (4) Describe the relevance of this paper to our lecture (≤ 600 words)
- Midterm report (6%)
 - Four-page A4 (Chinese/English, 12-size, single space, figures allowed)
 - Organized and detailed descriptions of 1 major paper + 2 references.
 - Figures and Tables are allowed.
- Final presentation (15%): hardcopy of slides, final report
 - 15 min presentation + 5 min Q&A
 - Final report: Six-page A4 (Chinese/English, 12-size, single space, figures allowed)
 - 15% (Presentation + Final report)
- (3) Course Participation: 5%

Website for paper survey: http://www.nature.com/siteindex/index.html; http://www.sciencemag.org/; http://www.ncbi.nlm.nih.gov/sites/entrez

7. 生成式人工智慧倫理聲明「有條件開放,請註明如何使用生成式 AI 於作業或報告」

基於透明與負責任的原則,本課程並未禁止學生利用 AI 進行協作或互學,以提升本門課學習品質。根據本校公布之「大學教育場域 AI 協作、共學與素養培養指引」,本門課程採取有條件開放,請註明如何使用生成式 AI 於作業或報告,說明如下:

- 學生可於課堂作業或報告中的「引用文獻後」簡要說明如何使用生成式 AI 進行議題發想、文句潤飾或結構參考等使用方式。若經查核使用卻無在作業或報告中標明,教師有權重新針對作業或報告不予計分。
- 本門課授課教材或學習資料若有引用自生成式 AI,教師也將在投影片標註或口頭說明。
- 修讀本課程之學生於選課時視為同意以上倫理聲明。