

CS5404 Advanced Compiler

by Prof. Jenq-Kuen Lee

Course Description

This course will introduce the aspect of embedded compiler techniques in ILP code optimizations, DSP Compilers, multi-core compilers for low power, and embedded and heterogeneous dual-core optimizations. This course now also covers basic prospect of AI compiler. This course will include LLVM software projects and use of embedded tools. This course is considered as an advanced course after basic compiler course and before the more advanced graduate compiler course. This can also be considered as the 1st course of compiler course in the graduate school. Following the experiences last year, we will also include special topic presentations from registered students. The main topics include

1. Data dependence analysis.
2. Loop parallelization theories.
3. Data flow analysis equations (Aho's book Chapter 8-10).
4. Pointer and Structure analysis
5. Parallel Languages and Parallel Programming Environments.
6. ILP compilers
7. DSP compilers
8. Superscalar and VLIW Compilations for modern single processor architectures.
9. DSP library and DSP compilation issues.
10. Compilers and OS for energy reductions.
11. Compilers for low-power.
12. Compilers for embedded systems.
13. Toolkits for DSP processors.
14. LLVM MLIR Study
15. OpenCL Compilers for HSA.
16. AI Compiler and Compiler Designs
17. OpenCL 2.2 and 3.0 specification discussions
18. NNEF Models and TVM Deep Learning Compilers

Languages and Software used

C, C++, Fortran 77, Fortran 90, PAC DSP Tools, LLVM, and GCC compilers

Text Books

Lecture Notes by the instructor

Reference Book

1. "Compilers, Principles, Techniques, and Tools", A. Aho, Monica Lam, R. Sethi, J. Ullman, Addison-Wesley, Second Edition, 2007.
2. "Optimizing Compilers for Modern Architectures", Randy Allen Ken Kennedy, Morgan Kaufmann, Academic Press 2002
3. "Embedded Computing: A VLIW Approach to Architecture, Compilers, and Tools", Chapter 7-8, J. Fisher, P. Faraboschi, C. Young, Morgan Kaufmann, 2005 (Elsevier).
4. "Encyclopedia of Parallel Computing", Padua, David (Ed.)
5. "Performance on Multi-Core programming using OpenMP and OpenCL", 2013(ASIAWORLD), ISBN: 9789868639867

Grading

1. Projects 40% (Totally three projects)
2. Final-exam 40%
3. Special topic presentations 20%

AI 使用規則：有條件開放

基於透明與負責任的原則，本課程鼓勵學生利用 AI 進行協作或互學，以提升本門課產出品質。根據本校公布之「大學教育場域 AI 協作、共學與素養培養指引」，本門課程採取有條件開放，說明如下

- 學生須於課堂作業或報告中的「標題頁註腳」或「引用文獻後」簡要說明如何使用生成式 AI 進行議題發想、文句潤飾或結構參考等使用方式。若經查核使用卻無在作業或報告中標明，教師、學校或相關單位有權重新針對作業或報告重新評分或不予計分。
- 本門課授課教材或學習資料若有引用自生成式 AI，教師也將在投影片或口頭標注。
- 修讀本課程之學生於選課時視為同意以上倫理聲明。