國立清華大學 112 學年第上學期課程大綱

科號 Course No.	LSMC515500	組別 Group		學分 Credit	2	人數限制 Size limit	
修課年級 For grade	 ■ 大學部 年級以上 (undergraduate) ■ 碩士班一年級以上(含博士班) graduate ■ 碩士班二年級以上(含博士班) 						
上課時間 Time	F7F8			教室 Room	521A LSBI		
科目中文名稱 Course title in Chinese	利用線蟲模型研究神經系統疾病特論一						
科目英文名稱 Course title in English	Special topics on <i>C. elegans</i> as a model to study neurological disorders Part II						
任課教師 Teacher	王歐力						
擋修科目 Prerequisite			:	擋修分 credit	數		

※下列各欄由任課教師提供※

一、課程說明 Course Description	The model organism C. elegans has become increasingly popular
	for the investigation of neurological diseases. One important
	factor is the simplicity of the overall design of the nervous
	system with its comparable high complexity on the molecular
	level as opposed to mammalian systems. In fact, the number of
	genes encoding neuronal proteins in C. elegans is very close to
	that found in higher organisms. Even though the nervous system
	of this nematode worm consists of only 302 cells, this animal
	displays a large set of complex behaviors such as intricate
	environmental sensing mechanisms including chemo-, thermo-
	and mechanosensing, complex locomotion and mating behavior,
	and habituation and learning processes. The worm has taken
	those neuroscience research labs by storm working on synapse
	development and neuronal plasticity as well as on the olfactory
	system. The latter provides extreme delicate sensing of olfactory
	cues via dozens of ciliated receptors which are embedded at the
	"nose" tip of the animal. Complicated intraflagellar transport
	(IFT) mechanism are close to being unraveled, and
	understanding IFT and the associated development of primary
	cilia will gain knowledge on many cilia-based diseases such as
	polycystic kidney diseases or Bardet-Biedl syndrome. While
	many of the latter diseases comprise defects in the <i>cilia transport</i>
	system it is also evident that defects in the axonal transport
	systems (ATS) play crucial roles in neurodegenerative disorders.
	Examples are the pathological accumulation of axonal tau

	protein in Alzheimer's disease or accumulation of axonal neurofilament protein in ALS (amyotrophic lateral sclerosis) all with correlated erroneous transport systems. In this class we discuss current progress on using <i>C. elegans</i> as a model to study (a) neurological diseases, (b) the underlying mechanisms of neuronal development and plasticity, (c) how IFT and ATS functions, as well as (d) the molecular structure and function of nematode synapses.
二、指定用書 Text Books	(1) "The Neurobiology of C. elegans" by Eric Aamodt; (2) "C. elegans Atlas" by Hall and Altun; (3) "C. elegans: A Practical Approach" by Ian Hope; (4) "C. elegans II" by Riddle et al.
三、參考書籍 References	(1) Hammarlund & Jin. Axon regeneration in C. elegans. Curr Opin Neurobiol. 2014 Aug;27:199-207. (2) Li & Le. Modeling neurodegenerative diseases in Caenorhabditis elegans.Exp Neurol. 2013 Dec;250:94-103. (3) Calahorro & Ruiz-Rubio. Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invert Neurosci. 2011 Dec;11(2):73-83. (4) Müller et al. Caenorhabditis elegans, a model organism for kidney research: from cilia to mechanosensation and longevity. Curr Opin Nephrol Hypertens. 2011 Jul;20(4):400-8.
四、教學方式 Teaching Method	Introductionary lecture by teacher and assigned student's presentations on current topics to study neurological disorders using <i>C. elegans</i> as a model organism.
五、教學進度 Syllabus	2 hourly seminar (whole semester) to discuss current progress on using <i>C. elegans</i> as a model to study (a) neurological diseases, (b) the underlying mechanisms of neuronal development and plasticity, (c) how IFT and ATS functions, as well as (d) the molecular structure and function of nematode synapses.
六、成績考核 Evaluation	Class performance: 35%. Assigned presentation: 45%. Attendance: 20%.
七、位址 http://	http://life.nthu.edu.tw/~laboiw/Handouts/Neurobiology_Handout .pdf