一、課程說明(Course Description)
本課程模組分為三個主要的部分,分別為即時追蹤與地圖建置(SLAM)、基於機器學習之場景理解
(Scene Understanding)與探索導航的動作控制(Action Control)。即時追蹤與地圖建置部分包
含機率模型與相機模型等理論基礎,再搭配2D場景追蹤建圖的實作並介紹RGB-based的3DSLAM。
場景理解的部分包含機器學習的基本概念,再帶到深度學習的技術與目前的物件偵測與語意切割技
術。動作控制的部分則包含路徑規劃與導航演算法,並帶入強化學習的概念來引導行進的路徑。

二、指定用書(Text Books)


三、參考書籍(References)
Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, Second Edition, MIT Press, Cambridge, MA, 2018
Sebastian Thrun, Wolfram Burgard, and Dieter Fox , Probabilistic Robotics,
2005. (Intelligent Robotics and Autonomous Agents series)
Kevin Murphy, Machine Learning: A Probabilistic Perspective.
Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and
Techniques, 1st Edition, 2009
Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.

四、教學方式(Teaching Method)
課堂講授、程式作業與專題實作

五、教學進度(Syllabus)
* Week 1 - Introduction
* Week 2 - Kinematic Model and Path Tracking Control
* Control System Basics
* PID Control
* Basic Kinematic Model
* Basic Kinematic Model
* Differential Drive Vehicle
* Pure Pursuit Control
* Kinematic Bicycle Model
* Week 3 - Motion Planning
* Motion Planning Introduction
* Path Planning
* Curve Interpolation
* Trajectory Planning
* Path Planning
* Week 4~5: Reinforcement Learning
* MDP
* Value Function
* Bellman Equation
* Reinforcement Learning
* Q-Learning / Sarsa / DQN
* Policy Gradient / Actor-Critic
* Week 6~9 - Lab: Project Environment Building
* Unity/ROS Environment Building
* Unity3D(URDF)
* Solidwork and Unity3D
* ROSBRIDGE
* Navigation and Collision Avoidence via RL
* Week 10~11 - SLAM Back-end
* State Estimation and SLAM Problem
* Probability Theory and Bayes Filter
* Kalman Filter / Extended Kalman Filter
* Particle Filter & Fast SLAM (optional)
* Graph based Optimization
* Graph Optimization for 2D SLAM (Bundle Adjustment)
* Occupancy Grid Map & Laser Beam Model
* Week 12~14 - 3D SLAM
* Feature Descriptor
* Multi-view Geometry
* Lie Group & Lie Algebra
* 3D SLAM: ORB-SLAM
* Direct Method
* DNN-based SLAM
* Week 15~16: Project Development
* Real Scene
* Simulation Scene

六、成績考核(Evaluation)
作業: 60% (15% for each HW)
期末專題(含實作、書面報告、口頭報告): 40%
課堂表現: Bonus

七、可連結之網頁位址 相關網頁(Personal Website)


八、採用AI使用規則 (Indicate which of the following options you use to manage
student use of the AI)
  有條件開放,請註明如何使用生成式AI於課程產出 (Conditionally open; please specify
how generative AI will be used in course output)