STEAM Education in Early Years Syllabus

• Lecturer: Ching-Ting Hsin/ Professor

• Email:cthsin@mx.nthu.edu.tw

Time: Monday 7 8 (15:30-17:20)Classroom: N201, Nanda Campus

• Class description

The purposes of this class are to help students to understand how to design and implement inquiry-based STEM activities and projects. Standers of early science in U.S. and Taiwan are introduced. Four approaches guide students to design their curriculum: (1) theme-based STEM activities, (2) learning center STEM activities (3) project-based STEM module, and (4) culturally integrated STEM module. Students will use their knowledge and skills that they learn in this class to develop lesson plans and guide kindergarteners to conduct STEM activities. Students will also develop STEM projects.

3.規劃適切的課程、教學及多元評量

3-2 依據課程綱要/大綱、課程理論及教學原理,以協同發展跨領域/群科/

師培科目課程、教學及評量。

專業 3-3 具備任教領域/群科/科目所需的專門知識與學科教學知能, 以進行教 素養 學。

指標 5.認同並實踐教師專業倫理

5-3 透過教育實踐與省思,以發展溝通、團隊合作、問題解決及持續專業成長的意願與能力。

師培

課程 3-(4)幼兒園領域專門知識與教學知能

核心|5-(1)教師自我省思、溝通互動與解決問題

內容

12年國教 19項議題融入

• 資訊素養與倫理

融入議題

科技教育

• 原住民族教育

新興議題

• 媒體識讀

Weekly schedule

week	Date	Topic	Reading/assignments
1	2/19	Introduction and grouping	Reading/assignments
1	2/19		
		Pretest: self-efficacy and outcome	
	2/26	expectation in teaching science) / C1
2	2/26	Introduction to STEM Education:	Moomaw C1
		Content of STEM	(Hsin, Li, & Tsai,
		STEM activities (Taiwan and Thailand)	2014; Hsin et al,
			2023)
3	3/4	Effective teaching	Moomaw C1
		Inquiry cycle	Gelman et al C3
		Scientific and engineering practices	(Haus der kleinen
			Forscher
			Foundation, 2017;
			Hsin & Wu, 2011,
			2023)
4	3/11	STEM activities for learning centers	Moomaw C2
		Haus der Kleinen Forscher (Little	HsinLab website
		Scientists' House) Program: the theme of	Handouts
		technology: forces and effects; lights,	Teaching
		colors and vision; water & air	demonstration
5	3/18	Guideline for ECE and care in Taiwan:	Handouts
		Cognitive domain	
		Haus der Kleinen Forscher (Little	
		Scientists' House) Program: the theme of	
		technology: forces and effects; lights,	
		colors and vision; water & air	
6	3/25	Expert talk: Programing	Turn in notes and
			questions of the talk
7	4/1	Computational thinking	PPT
		Languages learning AI	
8	4/8	Driving questions for investigation	Krajcik & Czerniak,
		Project approach: airplane, ice, tree,	C3 C4
		movie, quilts	Helm & Katz, C1 C9
		, 1	Moomaw C5
9	4/15	Mid-term exam	1.23011411 00
	., 13	Design and prepare for teaching STEM	
		in a kindergarten: develop lesson plans	
		in a kindergarten, develop lesson pians	

10	4/22	Design and prepare for teaching STEM	
		in a kindergarten: rehearsal and revised	
		lesson plans	
11	4/29	Teaching a STEM activity in Hsinchu	
		City Kindergarten 新竹市士林北路 36 號	
		2:20pm depart from Nanda campus	
		3:10-3:40pm activity	
12	5/6	Example of STEM projects: spinning	PPT
		tops, projects on Hsinlab website	HsinLab website
13	5/13	Example of STEM projects: respiratory	PPT
		diseases	Video clip
		Culturally integrated STEM projects:	Turn in lesson plans
		Tom Yum Kung	and reflection
14	5/20	Development of STEM projects	
15	5/27	Present STEM projects	
		Posttest: self-efficacy and outcome	
		expectation in teaching science	
16	6/3	Review of the class	Turn in STEM
			projects

• Teaching methods

Lectures, small group discussion, classroom activities, teaching STEM in a kindergarten, presentations of STEM projects

- Assignments and evaluation
- 1. STEM activity and project teaching demonstration (20%) 3/11 Choose 3-4 members to form a group. Each group presents 10-15 minutes.
- 2. Mid-term exam (20%) 4/15
- 3. A lesson plan and reflection on a STEM activity (25%) due 5/13
 - Choose 4-5 members to form a group.
 - For the lesson plan: Modify the lesson plan according to your teaching.

 Present the best lesson plan. Write the lesson plan in detail. Consider the requirements for the lesson plan (i.e., inquiry cycle, questions/sentences you use to guide children, at least two STEM disciplines)
 - For the refection, 1 page (Word document), 12-point-font, single-spaced. Consider the following questions when writing: What are the differences between the lesson plan and the actual teaching? What are the activities/sentences/questions you added or removed and what are the

reasons? What are the strengths of your teaching? What are the things that you can improve? Do you achieve your objectives and what are the evidences? What have you done or what do you need to do to achieve the objectives? What do you learn from this activity?

- 4. The web of concepts and activities of the STEM project (25%)
 Group work, 3-4 pages (Word document), single space, due 6/3
 Determine group members by drawing a lottery. Each group has 4-5 members.
 Each group presents 10 minutes on 5/27
- 5. Attendance and participation in classroom activities (10%)
 - Your engagement in the class is very important for this course. Inform the teacher when you will be absent from the class and ask your classmates' help to catch up the class you missed.
 - The teacher and the TA will supervise your participation in the class. If you are found <u>once</u> not engaged in the class or doing things not related to the class, it will count as <u>1-hour absence</u> (absent for 2 hours counts as 1 class absence).
 - You are free to use digital devices (laptop/tablet/cell phone) to do things
 related to the class. If you are found twice that you use digital devices to do
 things not related to the class, you are not allowed to use digital devices any
 more.
 - If you are <u>absent for 5 and more classes</u> (including sick, personal, menstrual leaves and no show), you will fail this course.

Readings

- 1. Gelman, R., Brenneman, K., Macdonald, G., & Román, M. (2010). Preschool pathways to science (PrePS): *Facilitating scientific ways of thinking, talking, doing, and understanding*. Paul H. Brookes Publishing.
- 2. Haus der Kleinen Forscher (Little Scientists' House) Program
- 3. Helm, J. H., & Katz, L. G. (2016). *Young investigators: The project approach in the early years* (3rd ed.). New York: Teachers College, Columbia University.
- 4. Krajcik, J. S., & Czerniak, C. M. (2018). *Teaching science in elementary and middle school: A project-based learning approach*. Routledge
- 5. Moomaw, S. (2013). Teaching STEM in the early years: Activities for integrating science, technology, engineering, and mathematics. Redleaf Press.
- 6. ppt and handouts

• References

1. Haus der kleinen Forscher Foundation. (2017). *Inquiry-based learning in STEM:* Science, technology, engineering and mathematics. Haus der kleinen Forscher

- Foundation.
- 2. Hsin, C.-T.*, & Wu, H.-K. (2023). Implementing a project-based learning module in urban and Indigenous areas to promote young children's scientific practices. *Research in Science Education*, *53*(1), 37-57. https://doi.org/10.1007/s11165-022-10043-z. **SSCI**
- 3. Hsin, C.-T., Wu, H.-K.*, Liang, J.-C., & Luu, D. T. (2023). Factors predicting kindergarten teachers' integration of science into their teaching in Indigenous areas. *Australasian Journal of Early Childhood*, 48(1), 50-65. https://doi.org/10.1177/18369391221120956 SSCI
- 4. Hsin, C.-T., Li, M.-C.*, & Tsai, C.-C. (2014). The influence of young children's use of technology on their learning: A review. *Educational Technology and Society*, 17(4), 85-99. **SSCI**
- 5. Hsin, C.-T., & Wu, H.-K*. (2011). Using scaffolding strategies to promote young children's scientific understandings of floating and sinking. *Journal of Science Education and Technology*, 20(5), 656-666. **SSCI**
- 6. 辛靜婷、吳心楷 (2021)。探究取向幼兒 STEM 方案課程:設計、教學與評量。心理出版社。