國立清華大學 112 學年第下學期課程大綱

科號 Course No.	LSMC515800	組別 Group		學分 Credit	2	人數限制 Size limit
修課年級 For grade	■大學部年級以上 (undergraduate) ■碩士班一年級以上(含博士班) graduate ■碩士班二年級以上(含博士班)					
上課時間 Time	F7F8			教室 Room	521.	A LSBI
科目中文名稱 Course title in Chinese	細胞内鞭毛運輸以及其相關纖毛疾病之探討一					
科目英文名稱 Course title in English	Special topics on intraflagellar transport and its relation to cilia- based diseases (Part 1)					
任課教師 Teacher	王歐力					
擋修科目 Prerequisite				擋修分 credit	數	

※下列各欄由任課教師提供※

一、課程說明 Course Description	The intraflagellar transport (IFT) machinery is an evolutionarily			
	conserved system shuffling proteins and signaling molecules into			
	and out of the cilium. Cilia are composed of a basal body located			
	beneath the cell surface, and the out-projecting axoneme is			
	surrounded by an external membrane continuous to the plasma			
	membrane of the cell. Based on different axoneme architecture,			
	cilia are motile when containing a central pair of MTs			
	surrounded by nine doublet MTs (9+2), and non-motile when			
	containing only outer nine doublet MTs (9+0). Non-motile cilia,			
	also called primary cilia, participate in a number of chemo-,			
	thermo-, and mechanosensory tasks, and act as the antenna of the			
	cell. In C. elegans, none of cilia are motile, whereas 60 out of			
	302 neurons possess cilia at the ends of their dendritic processes.			
	The primary chemosensory organ of <i>C. elegans</i> is built from a			
	subset of 12 amphid neurons. Ciliogenesis is tightly linked to the			
	precise assembly and maintenance of ciliary building blocks by			
	IFT. Two kinesins (heterotrimeric kinesin-2) and (homodimeric			
	kinesin-2 OSM-3) cooperatively power the anterograde travel of			
	the "IFT train", whereas at the turnaround zone (at the tip of			
	cilia) these motors become deactivated and IFT dynein moves			
	the (reassembled) train retrogradely back to the base of the			

	cilium. Notably, in <i>C. elegans</i> , cilia cannot grow when IFT kinesins such as OSM-3 are mutated (Nachury, 2018; Prevo et al., 2017). The rationale behind studying IFT is that numerous human ciliary disorders (collectively termed ciliopathies) are linked to defects in the IFT machinery, often leading to abnormal cilia growth. Particularly comprised are Bardet-Biedl syndrome (BBS), Joubert syndrome (JS), polycystic kidney disease (PKD), primary ciliary dyskinesia (PCD), Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and various forms of retinal degeneration (Brown and Witman, 2014; Satir, 2017). It is worth mentioning that PKD is a wide-spread disease in Taiwan (Yu et al., 2016). In this seminar, we discuss current state-of-the-art research on the molecular basis of IFT and its relation to human diseases.	
二、指定用書 Text Books	(1) "The Neurobiology of C. elegans" by Eric Aamodt; (2) "C. elegans Atlas" by Hall and Altun; (3) "C. elegans: A Practical Approach" by Ian Hope; (4) "C. elegans II" by Riddle et al.	
三、參考書籍 References	 Brown, J.M., and G.B. Witman. 2014. Cilia and Diseases. <i>Bioscience</i>. 64:1126-1137. Nachury, M.V. 2018. The molecular machines that traffic signaling receptors into and out of cilia. <i>Curr Opin Cell Biol</i>. 51:124-131. Prevo, B., J.M. Scholey, and E.J.G. Peterman. 2017. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. <i>FEBS J</i>. 284:2905-2931. Satir, P. 2017. CILIA: before and after. <i>Cilia</i>. 6:1. Yu, T.M., Y.W. Chuang, M.C. Yu, C.H. Chen, C.K. Yang, S.T. Huang, C.L. Lin, K.H. Shu, and C.H. Kao. 2016. Risk of cancer in patients with polycystic kidney disease: a propensity-score matched analysis of a nationwide, population-based cohort study. <i>The Lancet. Oncology</i>. 17:1419-1425. 	
四、教學方式 Teaching Method	Introductionary lecture by teacher and assigned student's presentations on current topics on intraflagellar transport and its relation to cilia-based diseases.	
五、教學進度 Syllabus	2 hourly seminar (whole semester) to discuss current state-of- the-art research on the molecular basis of intraflagellar transport and its relation to human diseases.	
六、成績考核 Evaluation	Class performance: 35%. Assigned presentation: 45%. Attendance: 20%.	
七、位址 http://	http://life.nthu.edu.tw/~laboiw/Handouts/Neurobiology_Handout .pdf	